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SUMMARY 

Different models for inviscid transonic flows are examined. The common assumptions that the flow is 
isentropic and irrotational are critically evaluated. Entropy and vorticity correction procedures for potential 
and stream function formulations are presented, together with the details of the treatment of shocks and 
wakes, and drag and lift calculations. The non-uniqueness problem of the potential formulation is studied 
using different artificial viscosity forms. Numerical results are compared with Euler solutions. 
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INTRODUCTION 

In 1970, Magnus and Yoshihara’ reported transonic calculations using a Lax-Wendroff scheme 
with augmented viscosity where shocks were captured. At the same time, Murman and Cole2 
introduced their type-dependent finite difference relaxation method for solving the transonic 
small-disturbance potential equation and it was demonstrated that some comparable results can 
be obtained with this simple model, which is much less expensive. Later, Murman3 introduced his 
fully conservative scheme and Jameson4 extended Murman’s work to solve the full potential 
equation. Since then, conservative versus non-conservative calculations have been the subject of 
many papers. Shocks in conservative calculations are usually stronger and are placed further 
downstream compared with the non-conservative ones. Since conservative calculations, combined 
with boundary layer codes, may lead to artificial separation, some engineers prefer to use non- 
conservative codes. It was noticed that Euler results lie in between the conservative and the non- 
conservative potential calculations. In fact, a linear combination of both is closer to the more exact 
answer. Lock5 suggested a quasi-conservative scheme; a weighted average scheme which satisfies 
the Rankine-Hugoniot jump conditions. His empirical fix is useful, in particular after Steinhoff 
and Jameson6 discovered that conservative potential codes produce non-unique solutions in a 
range of Mach numbers and angles of attack of engineering interest, while Euler and non- 
conservative codes do not have this problem, atleast for the same cases.’ 

Meanwhile, there has recently been distinct progress in solving the Euler equations implicitly 8,9  

or explicitly. ‘-I2 It seems that potential codes will be replaced by Euler ones which can be made 
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efficient especially on the new computers, exploiting the advantages of vector/parallel processing. 
It is still ofinterest, however, to fix the potential codes using more systematic methods to produce 

results closer to Euler solutions. By weakening the shock, there is less chance to have the non- 
uniqueness problem. After all, it is not clear that the steady Euler equations should have a unique 
solution. 

In this paper, the differences between the potential formulation and Euler equations are 
examined. Different models including the entropy and vorticity effects are discussed. A modified 
potential formulation, where Rankine-Hugoniot shocks are fitted, is recommended (i.e., the 
vorticity downstream of a shock can be neglected, especially if shock curvature is small). A simple 
method to implement the entropy correction is introduced and results are compared with both 
existing potential and Euler solutions. (See References 13-1 5 for similar formulations.) On the 
other hand, it is shown that for isentropic models, where mass and momentum are conserved (but 
the flow is not isoenergetic), shocks are weak and vorticity is generated due to the variation of the 
total enthalpy, and the results are very close to Euler solutions. 

Other models are also studied. In particular for two-dimensional and axisymmetric flows, the 
stream function formulation is very attractive. The entropy and vorticity effects can be easily 
included and, in this case, their solution is completely equivalent to Euler equations. 

Finally, the non-uniqueness problems are discussed. In general, artificial viscosity and time- 
marching integration procedures exclude certain types of non-uniqueness, but there might be no 
steady state solution. In existing potential codes, the artificial viscosity is switched off in the 
subsonic part of the shock to produce sharp profiles. If uniform viscosity were used, converged 
unique solutions are obtained (with smeared shocks) for the same conditions where existing codes 
produce non-unique solutions. 

In the following, the details are given and some numerical results are presented. 

EULER EQUATIONS 

The exact model of inviscid flow, namely, Euler equations, represents conservation of mass, 
momentum and energy. In Cartesian co-ordinates, the equations for two-dimensional flows using 
standard notation are 

P t  + ( P 4 ,  + ( P 4 ,  = 0 7 

( P 4 t  + ( P U 2  + PI ,  + ( P 4 ,  = 0 9 

( P 4  + (PUU), + ( P O 2  + PI, = 0 > 

(P), + (Pub), + ( P U N ,  = 0 9 

(1) 

(2 )  

(3) 

(4) 
where 

e = p / ( y  - 1)p + 34’, h = e + p / p .  

For a steady flow around an aerofoil, with a uniform free stream, h is constant throughout the 
domain. If mass, momentum and energy are conserved, it is not possible to put a restriction on 
entropy or vorticity. Across a shock the entropy jump is 

---[log AS - 1 (~ 2Y M 2  sin’ p -e) - y log ( (y + 1)M2 sin2 CT 
R y - 1  Y + l  y + l  

where M is the Mach number of the flow upstream of the shock and Pis the shock inclination. Due 
to the curvature of the shock, the vorticity generated is (Crocco relation) 



ENTROPY AND VORTICITY CORRECTIONS FOR TRANSONIC FLOWS 33 

d AS/R 
0 = p-. 

d* 
Across the wake (contact discontinuity), the density jumps, while the pressure and the tangential 
velocity are continuous. At a sharp trailing edge, to have the same static pressure on the lower and 
upper surfaces, the flow leaves the aerofoil tangential to the surface of higher total pressure (i.e-, 
lower entropy). It adjusts itself in a very short distance and asymptotically becomes parallel to the 
free stream. In the far field, downstream of the body, the pressure is uniform, but there is a variation 
of the speed and the density (in the direction normal to the stream) due to the vorticity. The drag 
can be estimated in terms of the entropy generated by shocks (Oswatitsch formula):16 

pq, AS dl. (7) 

To calculate the circulation in the far field (lift), the contribution from the vorticity generated by 
shocks should be included; in many practical cases, however, it could be neglected. Many codes are 
available to solve equation (1)-(4) implicitly or explicitly, where some kind of artificial viscosity is 
used to capture shocks. 

ALTERNATIVE FORMULATIONS 

If a shock-fitting procedure is used, the x and y momentum equations can be replaced by the 
corresponding non-conservative forms; namely, S and o / p  are constants along streamlines, with 
the proper jumps across shocks. The continuity and the vorticity equations in conservation form 
are solved for the velocity components: 

( P 4 X  + (PV),  = 0,  (8) 

where 
- M y  + v, = 0, (9) 

P = Pie -AS'R, pi = (1 - y - 1 M 2 , ( u 2  2 + v 2  - 1) 

The jump conditions admitted by equations (8) and (9) are 

and 

where pqn is the flux normal to the shock and qt is the tangential velocity. The conservation of the 
normal momentum is satisfied through imposing the right entropy jump. Actually, in this model, 
only a shock detection is needed, since once the shock position and inclination are known, AS and 
0 can be calculated from equations (5) and (6). 

Equation (8) can be written in a non-conservative form. In this case, the shock must be treated as 
an internal boundary to satisfy the jump conditions. The velocity components u and v are obtained 
from 

(p /az) [ (az - u2)u,  - uvv, - uvu, + (a2 - u')v,] = 0 ,  (12) 

(13) - u, + 0, = 0, 
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where 
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The jump condition (10) can be replaced by the Prandtl relation 

and 
41, = 41, = 4t. 

The system of equations (1)-(4) is hyperbolic in time, representing the physical unsteady process 
where the steady solution is reached asymptotically. Similarly, a time-dependent process can be 
constructed for the system (8), (9) or (12), (13). Although it does not represent a physical process, 
mathematically it provides a well-posed initial boundary value problem. Expanding pt using the 
steady relation of p as a function of q2 gives 

(The last term will cancel with pu( - AS/R),  + pv( - AS/R),.) 
To obtain the direction of the velocity vector, the unsteady 

dqldt = q x o + T VS. 

Equation (17) gives 

d ASIR 0, = ( -  V ,  + uy)  + p- 
d* ' 

Crocco relation17 is used: 

(17) 

where H is the flow angle; i.e., u = qcos 0, v = q sin 0. Hence the magnitude of the velocity and its 
direction are updated using the residuals of the continuity and the vorticity equations respectively. 
The coefficient of equation (16) should be slightly modified to avoid problems at the stagnation 
points, as in Reference 11 where irrotational isentropic flows are calculated in a similar way (see 
also References 18 and 19). 

POTENTIAL/STREAM FUNCTION FORMULATIONS 

If the vorticity does not vanish identically, the potential function alone is not adequate to represent 
the flow field. According to the Helmholtz theorem, the velocity vector can be replaced, however, 
by a gradient of a scalar and a curl of another vector; hence 

(19) u = $x + u', 

where 
v = (6, + v', 

u: + u; = 0. 

Equation (21) is automatically satisfied if a stream function tj' is introduced such that 

(22)  

(23) 

u' = *' 01 = - *' Y' X '  

With these two functions 6 and t j r ,  the governing equations are: 

( P 6 x ) x  + ( P 4 , ) y  = - (PU'), - (PV') ,9  
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and, *iX + *;, = - 0. (24) 
The details of such a formulation, including the boundary conditions for $', are given in 
Reference 13. 

For some grids, instead of condition (21), u' can be chosen to be zero; hence u; = - 0, which can 
be easily integrated to obtain u'. 

Other forms are also possible; for example, instead of an additive correcion, a multiplicative 
factor A is introduced such that 

Equations (8) and (9) become 

where p' = Ap and 

with an  = u/qdy - v/qa,. There are, however, some difficulties using this form at the stagnation 
point. 

The general Clebsch representationZo has both additive and multiplicative corrections and the 
flow field can be determined using the associated Hamiltonian system. 

For two-dimensional (or axisymmetric) flows, there is no need to use two functions 4, $' or 4, A. 
The flow field can be represented by a single stream function, for example: 

Pu=*y,  P O =  -*r (29) 
Hence, equation (8) is automatically satisfied and equation (9) becomes 

( ! k ) x + ( $ y ) y =  -0. 

The stream function formulation has other advantages. Beside the Dirichlet boundary condition 
on the aerofoil surface, no special treatment of the wake is needed. Also, no tracing of the 
streamlines is required, since at each grid point, S and w are known in terms of $. 

Forthree-dimensionalflows, at least two perturbation functions II/;, I); areneeded to represent the 
rotational perturbation part of the flow; hence, together with a potential, a total of three functions 
are used. On the other hand, only two stream functions are required to simulate three-dimensional 
flows, as shown in Reference 21. 

EQUATIONS IN GENERALIZED CO-ORDINATES 

If a general transformation is used, 

the continuity and vorticity equations become 
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The U and V quantities are the contravariant velocity components along the 5 and 9 directions 
respectively, A , ,  A ,  and A ,  are metric quantities and J is the Jacobian of the transformation: 

A ,  = t; + <;, A2 = ex?, + tyvy, A3 = ?; + v,", J = e,v, - t,x,. 
Notice that 

2 A , A ,  - A ,  = J 2 .  

Let 

Equations (32) and (33) become 

If u) = 0, t,b can be chosen to vanish identically. On the other hand, there is no loss of generality if we 
choose 4 to be zero everywhere (by applying the proper boundary condition in the far field on $). 
The speed is given by 

q 2 = u 2 + v 2 = - u  - 2 - u v + - v ,  '42 A1 2 
J 2  5 2  J 2  

In terms of I) only, equation (38) becomes 

rl/ is constant on the aerofoil; its value is determined such that the Kutta condition is satisfied at 
the trailing edge. For subsonic flows, a sharp trailing edge is a stagnation point. Using an 0-grid, for 
example, $q = 0 provides the value of t,b on the body and relaxation with previous values helps the 
convergence. For transonic flows, the entropy on the upper surface is, in general, different from the 
entropy on the lower surface; the constant is chosen such that the static pressure is the same when 
the solution converges. 

In the far field, the boundary condition is 

BT 
471 $ = y cos a - x sin a + -ln(x2 + B 2 y 2 ) ,  (39) 

where r is the circulation, B2 = (1 - M i )  and a is the angle of attack. Neglecting the contribution 
from the vorticity generated by the shock, r is 

r =  qkds, (40) s 
where qb = JA31C/h/p. Southz2 suggested that, if the outer boundary is located such that x2 + BZ y 2  
is approximately constant, the circulation term can be subtracted from expression (39); therefore 
there is no need to compute the integral jq,ds on the body. 

It should be mentioned that a potential code can be easily modified to solve the stream function 
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equation. The simple iterative algorithm (assuming the density is known, solving for I), calculating 
the flux and then updating the density) converges for subsonic flows. There are some difficulties, 
however, in the transonic case, as discussed in Reference 23. It can be shown that a positive 
perturbation of the flux always produces a negative perturbation in the density according to 
equation (41): 

Such an iteration may not converge in the supersonic region, since the exact relation (without 
freezing the density in the right-hand side) shows that a positive perturbation in the flux is 
associated with a positive perturbation in the density. However, if the artificial viscosity effects are 
dominant, and if the artificial density is under-relaxed, convergence can be obtained for some 
transonic cases. In general, the following algorithm is used, where U is calculated from 

where 8 = - ${/I),,. Equation (42) is solved along constant lines marching towards the body in 
two boxes, including the supersonic regions. Once U is known, I/ is calculated from the relation 
I/ = 8U. Then the density is updated in terms of I/ and U .  A compact scheme for discretizing 
equation (42), consistent with the calculations of the residual in terms of I) (equation (37)), 
produces sharp shocks where no excessive artificial viscosity and no under-relaxation of the 
density are required. 

For complex geometries, the body-fitted co-ordinates are not simple to construct. Cartesian co- 
ordinates (with exact boundary conditions) have been used successfully in Reference 24 for 
subsonic flows. Adopting the present formulation, transonic flows can be calculated in a similar 
way (atleast for engineering purposes). In this respect, the Dirichlet boundary condition is easier than 
the corresponding Neumann condition for the potential equation, which has also been successfully 
solved on Cartesian co-ordinates in Reference 25. 

APPROXIMATE MODELS 

The alternative formulations, described above, are equivalent to Euler equations. Whether a 
system of first-order equations in u and Y (q and 0), a potential function plus some correction or a 
stream function is used, shocks must be detected to calculate the entropy jumps. The momentum 
equations are satisfied through requiring that the entropy and the vorticity over the pressure, o / p ,  
are constants along streamlines downstream of a shock. Certain approximations lead to simplified 
models; their usefulness, however, depends on the validity of the assumptions made. In the 
following, four such models are examined. 

I .  Irrotational isentropic flow 

It is assumed that both S and w are negligible. The x and y momentum equations are replaced 
by the conditions w = 0 and S = 0. The continuity equation in conservation form and the 
irrotationality condition can be solved simultaneously without any shock identification procedure. 
The irrotationality condition can be automatically satisfied if a potential is used, while a stream 
function satisfies the continuity equation by construction. The second-order equation of the 
potential or the stream function has the same characteristics and it can be shown that the potential 
lines are perpendicular to the streamlines. 
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The mass and the energy are conserved but the momentum is not. The drag can be calculated in 
terms of the normal momentum losses across shocks: 

n 

D = J sinP(pq,Z + p)dt, 
shocks 

143) 

where fl  is the angle of the shock relative to the free stream direction. For a one-dimensional flow, 
expanding p and p in terms of u, where u = 1 + U, the jump in momentum, assuming mass is 
conserved, is given by 

12 l + Y  
p ( 1 +  U)U + Ap = (44) 

The first term in expression (44) is an approximation of the entropy which would have been 
produced if the isentropic condition were relaxed. 

Across the wake, the pressure, density and tangential velocity are continuous; the circulation is 
determined such that the static pressure at the trailing edge is the same on the upper and the lower 
surfaces. 

11. Irrotational non-isentropic flows 

The entropy jump in equation ( 5 )  depends on the Mach number upstream of the shock and the 
shock inclination; the vorticity, however (equation (6)), depends on the shock curvature. 
(Downstream of a straight shock, the vorticity vanishes; i.e., the flow remains irrotational but with 
a different level of entropy.) Assume the shock curvature is neglected, o = 0, but AS # 0; in this 
model, the mass, energy and momentum in the streamwise direction are conserved. The 
momentum normal to streamlines is not conserved, however, due to the present approximation. 
The mass balance across a shock is given by 

= ( P C I ~ ) ~  = (pie-AS’Rq n 2‘ (45) 

The corresponding relation in the isentropic irrotational approximation does not include the 
factor eCASlR; i.e., the difference between the two models is approximately a source distribution 
along the shock, where the strength of such a source depends on the entropy jump. Notice that the 
changes of the velocity field, Aq, due to the entropy term is not small: 

Aq ASIR 
q I - M ”  

At the foot of the shock, there is a singularity, since there will be in general a mismatch between 
the curvature of the streamlines satisfying the shock jump conditions and the wall curvature. It is 
assumed that the vorticity there is finite. 

- 

Since ASIR = f ( M t ) ,  where M 2  = M 2  sin2 P, the derivative with respect to $ is 

dAS/R - o’f d M 2  
d$ aM,2 a$ 

- - -( sin2 p-- + 2 M 2  sin flcos 

It is required that cos P dP/d$ be bounded. This is true in the Zierep-Oswatitsch theoryz6 where 
((/y),ho,k = y In y(5 is tangential to the wall and q is tangential to the shock at the singular point). It 
is also true in other theories; for example, if 5 = y3I2. Based on the numerical solution of Euler 
equations, it seems that the singularity has the same form as in the potential calculations or, in 
other words, the vorticity effects can be neglected there, as will be discussed later. Since the pressure 



ENTROPY AND VORTICITY CORRECTIONS FOR TRANSONIC FLOWS 39 

far downstream, P d ,  is not uniform due to the entropy variation, the drag based on a control 
volume enclosing the aerofoil is 

D = ( P ,  - Pd) dA = P ,  (ASIR) dA. lA (47) 

Across the wake, the density jumps due to the different levels of entropy. If the pressure is made 
continuous, there will be a circulation generated along the wake due to a jump in the tangential 
velocity. At a sharp trailing edge, if the pressure is forced to be the same on the upper and lower 
surfaces, the flow will leave tangential to the surface of lower entropy. 

A modified potential formulation. Since the flow is assumed to be irrotational, a single potential 
function can be used (i.e., there is no rotational correction and $’ vanishes everywhere since w = 0). 
The density has to be modified by the entropy function and hence it appears that the entropy has to 
be known everywhere downstream of the shock. Some simplification can be achieved; namely, 
expanding the continuity equation gives 

(48) e-AS’RC(Pi4x)x + ( ~ i 4 y ) y I  + Pi4x(e-AS/R)x + Pi4y(e-AS/R)y =O. 
The last two terms cancel and equation (48) reduces to the classical potential equation, except 
across shocks and wakes where the entropy jumps. Since the body is a streamline, no special 
treatment is required there. No special grids are needed as in Reference 15 and extension to three- 
dimensions* is straight forward. A variational formulation is given in Reference 28. 

To calculate the pressure, it is noticed that the formula py may be closer to Euler results than 
p;e-AS/R (except at the trailingedge). If the correction due to the vortcity is u’ (where v‘ is set equal to 
zero), equation (9) becomes 

or 

u’ N - ASIR. 
P4 

Expanding the formula for the pressure including the vorticity effects, gives 

p = (p i  + 6p)e-AS/R N p i  - pqu‘ - AS/Rpi .  (51) 
Using equation (50), the last two terms in equation (51) cancel each other and thus the pressure is 
given by the isentropic formula in terms of the irrotational speed. Hence, across the wake, assuming 
the isentropic pressure to be continuous is a good approximation except near the trailing edge. 

Computational algorithms. To implement the modified potential formulation, a shock point 
operator is introduced to satisfy equation (45). First, a comparison with Murman’s scheme for 
the small-disturbance equation is given. In the non-conservative scheme of Murman and Cole, 
central differences are used across the shock. For example, if the shock is located between the 
grid points i and i - 1, the flux term (4:)x is discretized using +i and 4i-l, while (4:)x is 
discretized using 4i, 4i-1 and 4i+l:  

* For an unyawed elliptic wing with a self-similar wing section (where the loading is elliptic and Prandtl lifting-line theory 
gives good resultsz9), the isentropic potential solution may not be unique and there is a need for such a non-isentropic 
formulation. 
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The corresponding conservative operator is given in terms of q5i,q5i+l,4i-l and 4i-2, where 
differences across shocks are avoided: 

Equation (53) can be rewritten as the sum of central difference and backward difference operators. 
It can be shown that using equation (53) is the same as fitting a normal shock between i and 
i - 1 points.30 LockS suggested using a weighted average of the two operators; namely, 

A is chosen (empirically) to satisfy the Rankine-Hugoniot relations across the shock. To fix the 
factor I ,  Prandtl’s relation is suggested in Reference 31. In Reference 32, the following form is used 

For the full potential equation in conservation form, equation (55) is replaced by 

where 
,-AS/R Pi-3/2Ui-3/2 =Pi+ 1/2%+1/2 , 

AS/R = f (M?-3/2). 

(56) 

(57) 

The four operators (52)-(56) are summarized in Table I. 

111. Rotational isentropic flows 

In this model, the mass and the momentum are conserved. The flow is forced to be isentropic 
( S  = 0), hence the energy is not conserved. Thus there is, in general, a vorticity generated by the 
shock and o # 0. So if equations (1)-(3) are solved and equation (4) is replaced by the isentropic 
relation for the pressure, h is not constant downstream of the shock and the vorticity is (Ah is 
a function of $ only) 

LO= -pdAhfdl l / .  (58)  

Table I. Comparison of shock operators 

f-- f- f+  
K Y Y 

A X 
i - 2  i - 1  Shock i i + l  

Murman’s conservative 

Murman’s non-conservative 

operator: 

operator: 

f +  - f - -  = 0 

f +  - f - -  = (f-- f--) 

Lock’s scheme: 

Present scheme: 

f+ - f - -  = (1 - h ) ( f -  -f--)  

f+  - f - -  = (AS/R)(f+ + 1) 
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Table 11. Comparison of approximate models 

Model x-m y-m Energy Mass Entropy Vorticity 

I NC NC C C C C 
I1 C NC C C NC C 
I11 C C NC C C NC 
IV C C C NC C NC 
Euler C C C C NC NC 

C = conserved. NC = not conserved. 

Based on energy losses, the drag is 

pq, Ah dl. (59) D =  -- 
qa, ' S  shocks 

This model has been used by Magnus and Yoshiharal to calculate transonic flows. It is interesting 
to notice that the differences between the quantities downstream of a shock in this model and in 
Euler calculations are small. 

IV. Isoenergetic isentropic flows 

Viviand" suggested solving the momentum and energy equations together with the isentropic 
relation. The density is updated in terms of the flux as in the stream function formulation. Mass is 
not conserved and the drag can be estimated in terms of the mass unbalance across shocks. 

The conservative quantities of the four models are summarized in Table 11. The shock polars 
for some of these models are given by Viviand.'l The special case of a normal shock 
(one-dimensional flow) is also studied in Reference 15. It should be mentioned that the 
non-isentropic irrotational case has the same shock polar as the Euler equations and fitting 
Rankine-Hugoniot shocks in potential calculations yields comparable results to Euler solutions. 

NON-UNIQUENESS PROBLEMS 

There is no proof that the steady Euler equations have a unique solution in the transonic regime. 
There are some questions, however, whether certain approximations (e.g., isentropic assumption) 
are responsible for some non-uniqueness problems. The quasi-one-dimensional flow in a 
convergent-divergent nozzle is a simple and interesting problem. If potential formulation is used, 
non-unique solutions are possible. Excluding expansion shocks for physical reasons, the position 
of a compression shock is not uniquely determined. Even if the shock strength is fixed, there are 
three possibilities when the inlet condition is supersonic: (i) a shock in the divergent part; (ii) a shock 
in the convergent part; (iii) two shocks, one in the convergent part of the nozzle and the other in the 
divergent part. Similarly, Euler equations have non-unique solutions, but some of the non-unique 
solutions of the potential equation are not admissible as Euler solutions. If the back pressure is 
prescribed, the potential solution may not exist, while non-unique Euler solutions with the same 
entropy can be constructed. If artificial viscosity (satisfying entropy inequality) is added to Euler 
equations, expansion shocks are eliminated but non-unique solutions of compression shocks are 
still possible. It is known, however, that shocks in the convergent part of the nozzle are physically 
unstable;33, hence, if a time-dependent marching scheme representing the physical unsteady 
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process is used, such a solution will be automatically excluded. On the other hand, with Newton’s 
method, the unstable solution may be obtained numerically. 

The problems of two-dimensional flows are more complicated. Consider the small-disturbance 
equation with uniform viscosity:34 

v$xxx - 4 X 4 X X  + 4 y y  = 0.  (60) 

Assuming there are two solutions + 1  and q52 satisfying equation (60) and the boundary conditions 
(say, flow in a channel where 4 and 4x are given at the inlet, 4 is given at the exit, 4, = f’(x) 
at the wall y = f (x)  and at the axis of symmetry 4y = 0), the equation for the difference between 
the two solutions, E = 4l - I&, is 

%XX - %4k - 9%) + E,, = 0.  (61) 

Multiplying equation (55) by E and integrating by parts gives 

$ E : ( U ~  + u 2 )  -$dxdy - J EEydY 
axis + wall 

VEE,, - ~ V E :  - ~ E E , ( u ~  + u 2 )  dy = 0. +s exit + inlet 

The only boundary term which does not necessarily vanish is 

-ivs E: dy. 

It is clear that if u1 + u2 is negative (subsonic flows), E should be identically zero; therefore the 
solution is unique. In general, the viscosity term drops out except at the boundary and the 
non-uniqueness problem is not settled for transonic flows. Even if artificial viscosity and 
time-dependent marching schemes are used, a steady unique solution cannot be guaranteed. 

It is noticed, however, that in the existing potential codes, the artificial viscosity is switched off in 
the subsonic region to produce sharp shocks. In Euler codes, viscosity is used everywhere for 
stability reasons. Some numerical experiments with uniform viscosity in potential codes indicate 
that the problem of non-uniqueness can be, at least, postponed. Shocks, of course, are more 
smeared, but the solutions are still meaningful. Two forms of artificial densities are tested in the 
present work: 

exit 

and 

where ,LL is a constant in the shock region. Equation (64) produces an artificial viscosity term of the 
form ,u[(uq,), + (vq,),] which is an approximation of p$sss. In Reference 35, a variable continuous 
p is suggested and it is claimed that only dissipative terms are thus produced; it is not clear, 
however, how the lower-order terms (because of the conservation form) are cancelled. 

If a second-order form of shifting density, velocity or flux is used, the resulting scheme is not 
dissipative; for example, 

P = P - P(Pi  - Pi- 1) - & ( p i -  1 - P i - 2 ) .  (65) 
E can be chosen, however, such that equation (65) reduces to a first-order (dissipative) formula in the 
shock region. 
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In passing, sharp shocks are obtained in Reference 6 as a limit of a sequence of calculations using 
equation (63). 

It should be mentioned that the solution is dependent on the amount of the artificial viscosity 
introduced through the discretization process. Moreover, by refining the mesh, more artificial 
viscosity may be needed and the numerical solution does not approach the exact solution of the 
inviscid partial differential equation. 

Instead, the potential differential equation may be replaced by the viscous transonic equation 
where the coefficient of the viscous term can be determined in terms of Prandtl and Reynolds 
numbers (Reference 34). Assuming that the viscous transonic differential equation has a unique 
solution, it may be possible to construct a discrete analogue which also has a unique solution. 

NUMERICAL RESULTS 

Three sets of results are presented (Figures 1-11). First, the stream function results, where s = 0 
and w = 0, are compared with Euler solutions. Second, the modified potential results, s # 0 and 
o = 0, are shown, together with the potential calculations with uniform viscosity in the shock 
region. Third, the results of the isentropic rotational formulation (where mass and momentum 
equations are solved for isentropic flows) are given. 

All these results are obtained using the CDC 203 computer. The Euler solutions are produced 
from Flo 52-S,37 a modified version of Jameson’s Runge-Kutta finite volume code.* The potential 
solutions are calculated using Zebra r e l a ~ a t i o n . ~ ~  The stream function solutions are obtained by 
modifying the potential code. 

All the calculations are for a NACA 0012 aerofoil. An 0-grid of 120 x 34 points is used for the 
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Figure 1. Potential, stream function and Euler solutions for a subsonic case 

* Recently, J a m e ~ o n ~ ~  successfully applied multigrid techniques to Euler calculations where very fast convergence to 
steady state solutions is achieved. The same acceleration techniques are equally applicable, however, to both potential 
and stream function calculations. 
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Figure 2. (a) Comparison between Lock's result and the Euler solution (after Sells). (b) The behdviour of the Euler 
solution at the foot of the shock 
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Figure 6 .  Modified potential solution, including entropy correction, in the non-uniqueness range 

M, = .830, a = 0.3O 

-1.2 

....... 
'. 0. 

. .  
. *  , . .  

R E S I D  1 RESIO 2 CP!J s e t .  
.423E-02 .367E-09 49.2 

1.0- 

L 

-5.0 - 
- 

-7.0. I I I 1 I I 
0 200 400 600 

Iterations 

(c)  (d)  
Figure 7. Potential solution, with uniform artificial viscosity in the shock region, in the non-uniqueness range 



ENTROPY AND VORTICITY CORRECTIONS FOR TRANSONIC FLOWS 

x 
0 
0 c 
v) 

0.6 

0.4 

49 

- 

- 

- 

- 

f /  
0 Flo 36 t + Flo 52 

0.81 

e 
0 
CI .- 
P '- I 

0.76 
- 

0.80 0.84 
u 
0.88 0.92 

Mal 
Figure 8. Shock position versus Mach number for non-lifting flows 

Euler calculations. The grid of the potential and stream function is slightly different (149 x 30). 
The pressure distributions on the surface of the aerofoil and the convergence histories (maximum 

residuals versus number of iterations) are plotted for different Mach numbers and angles of attack. 
Euler calculations are, of course, more expensive than potential or stream function ones. They are 
20-5 times slower (in terms of CPU seconds) depending on the Mach number. Cl-a curves for 
M ,  = 0.83 and 0.79 are given for different models. The drag and the shock position variations with 
Mach numbers at  zero angle of attack are also shown. A comparison between the Euler solution 
and Lock's result using his quasi-conservative scheme is given after Sells." At the foot of the shock, 
the Euler solution behaves as in the potential calculations;30 namely, (u - ushock) is proportional to 
(x - sShock) log (x - xShock). The vorticity effects are indeed small and can be neglected, especially for 
the symmetric cases at zero angle of attack. For a lifting aerofoil, the flow is forced to have a 
stagnation point at the trailing edge, as in the potential calculation, and the streamline leaving the 
aerofoil bisects the trailing edge angle. This aspect is a subject of further investigation. 
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CONCLUDING REMARKS 

First, it is shown that isentropic irrotational transonic flows can be calculated using the stream 
function, in a body-fitted co-ordinate system, in the same way a potential equation is solved. 

If entropy effects are included in potential or stream function formulations, closer results to the 
Euler solution are obtained; particularly in the range where existing codes (without entropy 
modifications) produce non-unique solutions. 

However, non-uniqueness is not only due to the isentropic assumption. For example, if mass and 
momentum equations together with the isentropic relation (pup’) are solved, unique solutions are 
obtained in the same range where the isentropic potential solution is not unique. 

Unique solutions are also obtained with existing potential codes if enough uniform artificial 
viscosity in the shock region is used, but shocks are smeared. Thus, by weakening the shock due to 
entropy, vorticity or artificial viscosity effects, the non-uniqueness problem is avoided for the cases 
considered. 
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